A    B    C    D    E    F    G    H    I    J    K    L    M    N    O    P    Q    R    S    T    U    V    W    X    Y    Z


Wheel change
Save Energy

Ganz neu ...

Ganz neu ...

Wheel Positions
Change Wheels

History-Suspension 1
History-Suspension 2
History-Suspension 3
History-Suspension 4
History-Suspension 5
History-Suspension 6
History-Suspension 7

Damper 1 - generally
Damper 2 - single-tube
Damper 3 - notch
Damper 4 - double-tube
Damper 5 - piston
Damper 6 - electronic
Damper 7 - Magnetic Ride
Damper 8 - test
Damper 9 - test
Damper 10 - repair
Damper 11 - history

Steering 1 - generally
Steering 2 - city mode
Steering 3 - track rod
Steering 4 Rack Pinion
Steering 5 - ratio
Steering 6 - var. ratio
Steering 7 - by wire
Steering 8 - ball
Steering 9 - worm roller
Steering 10 - hydraulic
Steering 11 - hydraulic
Steering 12 - pump
Steering 13 - torque
Steering 14 - electric
Steering 15 - electric
Steering 16 - safety
Steering 17 - history

Four Wheel Steering 1
Four Wheel Steering 2
Four Wheel Steering 3

Steer. Wheel 1 - generally
Steer. Wheel 2 - buttons
Steer. Wheel 3 - lock

Undercarriage 1
Undercarriage 2
Electr. Stab. Program
Dry Joint
Suspension control 1
Center of Gravity
Oblique/lateral drift angle
Elk Test
Transversal Axis
Suspension Carrier
Below View
Adj. suspension
Wheel Bearing 1
Wheel Bearing 2
Wheel Bearing 3
Wheel Bearing 4

Ind. pulse sensor
Wheel sensor 1
Wheel sensor 2

Stabilizer 1
Stabilizer 2
Stabilizer 3
Double-wishbone 1
Double-wishbone 2
Double-wishbone 3
McPherson Strut 1
McPherson Strut 2
McPherson Strut 3
McPherson Strut 4

Trailing Arm
Twist-beam Rear Axle
Space Arms
Multilink Axle
Semi-trailing Arm Axle
Rear-wheel Drive
Air suspension truck
Electr. Stab. Program
ABS/ESP-Hydr. Unit
One-arm Swing. Fork
Formula-3 Racing Car
Pend. Wheel Suspen.
Torson Crank Suspen.
Rigid Axle 1
Rigid Axle 2
Rigid Axle 3
Rigid Axle 4
Rigid Axle 5

DeDion Axle 1
DeDion Axle 2
Self steering axle
Track rod joint
Coil Spring 1
Coil Spring 2
Coil Spring 3
Leaf Spring
Torsion Bar Spring
Rubber Suspension
Hydropn. Suspension
Air Suspension 1
Air Suspension 2
Spring systems
Electr. Air Suspension
Tyre Calculation
Inch -> mm
Axle Load Distrib.
Payload Distrib.
Roller Resistance 2

Wheel suspension 1
Wheel suspension 2
Suspension 3
Suspension 4
Suspension 5
Suspension 6
Suspension 7
Suspension 8
Suspension 9
Suspension 10
Suspension 11
Suspension 12
Suspension 13
Suspension 14
Wheels 1
Wheels 2
Wheels 3
Wheels 4
Wheels 5
Wheels 6
Wheels 7
Wheels 8
Wheels 9
Wheels 10
Wheels 11
Wheels 12
Wheels 13
Suspension 1
Suspension 2
Suspension 3
Carriage 4
Suspension 5
Steering 1
Steering 2
Steering 3
Steering 4

Damper 4 - Double Tube

Last page ...


Originally it had only little advantage over the single-tube shock absorber. Although the gas area between the tubes allowes a somewhat shorter construction, the disadvantage is less efficient cooling. The first examples also had an open compensation area and when unsuitably stored, could leak. In the meantime, this area is closed and the gas is held at a pressure of up to 8 bar.


Double-tube dampers are also operated with gas, indeed, with a little less pressure. The pre-pressure decreases foaming and the development of bubbles, the same as the single-tube shock absorber. The space between the two tubes, which is filled to approx. 2/3 with oil, serves as a compensation area. Two base check-valves regulate the influx and outflow respectively.
The typical characteristics of the hydraulic telescopic dampers can also be seen here. It is easier to compress them than to pull them apart. Thus the oscillations caused by the suspension can be efficiently damped, without limiting the comfort of the passengers.
Double-tube dampers are more suitable when it comes to tuning because they can be adjusted from the outside. If one compresses them completely, the nut on the damper-plunger is accessible using a suitable spanner. If this is then turned, the damping effect can be altered. If there is also a nut on the plunger-rod side, the compression and the rebound can even be seperately adjusted. In the two-wheeler field, through the plunger-rod in permanently installed dampers, this type of adjusting is indeed normal.
Because the regulating of a permanent base-valve is more easily possible than with a movable floating piston, the double-tube shock absorber has become the basis for further electronically controlled dampers.


Incorrect assembly or storage can allow gas to penetrate into the plunger area. 11/10

Next page ...