Imprint Contact 868 Videos
900.000 Callings



Formulary
Exercises

Wheel change
Save Energy
History


Video History-Suspension 1
Video History-Suspension 2
Video History-Suspension 3
Video History-Suspension 4
Video History-Suspension 5
Video History-Suspension 6
Video History-Suspension 7

Video Undercarriage 1
Video Undercarriage 2
Video Steering Wheel 1
Video Steering Wheel 2
Video Steering Lock
Video Steering
Video Safety Steering
Video Rack Pinion Steering
Video Steering Ratio 1
Video Steering Ratio 2
Video Steering Ratio 3
Video Ball Steering
Video Worm Roller Steering
Video Hydraulic Power Steer. 1
Video Hydraulic Power Steer. 2
Video Electr. Power Steer. 1
Video Electr. Power Steer. 2
Video Electr.-hydraulic Pump
Video Torque (power steer.)
Video Electr. Stab. Program
Video Finger Steering
Video One-piece Track Rod
Video Four Wheel Steering 1
Video Four Wheel Steering 2
Video Four Wheel Steering 3
Video Dry Joint
Video History
Video Suspension control 1
Video Wheel positions
Video Suspension
Video Spring systems
Video Electr. Air Suspension
Video Center of Gravity
Video Oblique/lateral drift angle
Video Elasto-kinematics
Video Elk Test
Video Wheel Bearing 1
Video Wheel Bearing 2
Video Wheel Bearing 3
Video Wheel Bearing 4
Video Ind. pulse sensor
Video Wheel sensor 2
Video Transversal Axis
Video Suspension Carrier
Video Below View
Video Adj. suspension
Video Stabilizer 1
Video Stabilizer 2
Video Double-wishbone 1
Video Double-wishbone 2
Video Double-wishbone 3
Video Air suspension truck
Video McPherson Strut 1
Video McPherson Strut 2
Video McPherson Strut 3
Video McPherson Strut 4
Video Trailing Arm
Video Twist-beam Rear Axle
Video Space Arms
Video Multilink Axle
Video Semi-trailing Arm Axle
Video Rear-wheel Drive
Video Electr. Stab. Program
Video ABS/ESP-Hydr. Unit
Video One-arm Swing. Fork
Video Formula-3 Racing Car
Video Pend. Wheel Suspen.
Video Torson Crank Suspen.
Video DeDion Axle 1
Video DeDion Axle 2
Video Rigid Axle 1
Video Rigid Axle 2
Video Rigid Axle 3
Video Rigid Axle 4
Video Rigid Axle 5
Video Self steering axle
Video Track rod joint
Video Springs
Video Coil Spring 1
Video Coil Spring 2
Video Coil Spring 3
Video Leaf Spring
Video Torsion Bar Spring
Video Rubber Suspension
Video Hydropn. Suspension
Video Air Suspension 1
Video Air Suspension 2
Video Shock Absorber 1
Video Shock Absorber 2
Video Shock Absorber 3
Video Shock Absorber 4
Video Shock Absorber 5
Video Single-tube Damper 1
Video Single Tube Damper 2
Video Double-tube Damper
Video Shock Absorber Piston
Video Friction Absorber
Video Tyres
Video Wheel Positions

Video Tyre Calculation
Video Inch -> mm
Video Slip
Video Axle Load Distrib.
Video Payload Distrib.
Video Roller Resistance 2

Video Wheel suspension 1
Video Wheel suspension 2
Video Wheels 1
Video Suspension 1
Video Suspension 2
Video Suspension 5
Video Steering 1
Video Steering 2


          A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Virtual Pivot Axle











Assignment

What the constructors would really have liked, was to have had the pivot axle in the wheel. This is the reason why, e.g., in some modern double-wishbone-suspensions the upper ball-head does not lie next to the swiveling wheel, but above it. To see this, click on the lower button. The four-link suspension is a brilliant contribution to this theme. When turning the steering the wheel turns around a so called virtual steering axis. This is now, no longer the connection of the upper- and lower ball joints, but can be construed from the intersections of the strut extentions.

Function

Unfortunately, in the above picture, the second lower strut is not visible. To make things easier to understand, the sub-frame and parts of the engine have been cut away. If each strut has its own ball joint, the pivot axis can be be moved very far outwards and, in addition, can change with the turning angle. Depending on the arrangement and the length of the two wishbones, the camber-, kingpin- and caster changes, the precise matching to the spring compression is possible.
Both the front axle constructions shown in the above pictures make an important contribution to the reduction of the interference force radius. This is the distance of the tyre center to the pivot axis at the height of the wheel hub. A high interference force radius conducts the accelerating and the decelerating forces to the steering. The further the pivot axis is shifted into the wheel, the lower these influences are. 12/10




cartecc.com               Top of page               Index
2001-2015 Copyright programs, texts, animations, pictures: H. Huppertz - E-Mail
Translator: Don Leslie - Email: lesdon@t-online.de

Our E-Book advertising