Imprint Contact 868 Videos
900.000 Callings



Formulary
Exercises

Wheel change
Save Energy
History


Video History-Suspension 1
Video History-Suspension 2
Video History-Suspension 3
Video History-Suspension 4
Video History-Suspension 5
Video History-Suspension 6
Video History-Suspension 7

Video Undercarriage 1
Video Undercarriage 2
Video Steering Wheel 1
Video Steering Wheel 2
Video Steering Lock
Video Steering
Video Safety Steering
Video Rack Pinion Steering
Video Steering Ratio 1
Video Steering Ratio 2
Video Steering Ratio 3
Video Ball Steering
Video Worm Roller Steering
Video Hydraulic Power Steer. 1
Video Hydraulic Power Steer. 2
Video Electr. Power Steer. 1
Video Electr. Power Steer. 2
Video Electr.-hydraulic Pump
Video Torque (power steer.)
Video Electr. Stab. Program
Video Finger Steering
Video One-piece Track Rod
Video Four Wheel Steering 1
Video Four Wheel Steering 2
Video Four Wheel Steering 3
Video Dry Joint
Video History
Video Suspension control 1
Video Wheel positions
Video Suspension
Video Spring systems
Video Electr. Air Suspension
Video Center of Gravity
Video Oblique/lateral drift angle
Video Elasto-kinematics
Video Elk Test
Video Wheel Bearing 1
Video Wheel Bearing 2
Video Wheel Bearing 3
Video Wheel Bearing 4
Video Ind. pulse sensor
Video Wheel sensor 2
Video Transversal Axis
Video Suspension Carrier
Video Below View
Video Adj. suspension
Video Stabilizer 1
Video Stabilizer 2
Video Double-wishbone 1
Video Double-wishbone 2
Video Double-wishbone 3
Video Air suspension truck
Video McPherson Strut 1
Video McPherson Strut 2
Video McPherson Strut 3
Video McPherson Strut 4
Video Trailing Arm
Video Twist-beam Rear Axle
Video Space Arms
Video Multilink Axle
Video Semi-trailing Arm Axle
Video Rear-wheel Drive
Video Electr. Stab. Program
Video ABS/ESP-Hydr. Unit
Video One-arm Swing. Fork
Video Formula-3 Racing Car
Video Pend. Wheel Suspen.
Video Torson Crank Suspen.
Video DeDion Axle 1
Video DeDion Axle 2
Video Rigid Axle 1
Video Rigid Axle 2
Video Rigid Axle 3
Video Rigid Axle 4
Video Rigid Axle 5
Video Self steering axle
Video Track rod joint
Video Springs
Video Coil Spring 1
Video Coil Spring 2
Video Coil Spring 3
Video Leaf Spring
Video Torsion Bar Spring
Video Rubber Suspension
Video Hydropn. Suspension
Video Air Suspension 1
Video Air Suspension 2
Video Shock Absorber 1
Video Shock Absorber 2
Video Shock Absorber 3
Video Shock Absorber 4
Video Shock Absorber 5
Video Single-tube Damper 1
Video Single Tube Damper 2
Video Double-tube Damper
Video Shock Absorber Piston
Video Friction Absorber
Video Tyres
Video Wheel Positions

Video Tyre Calculation
Video Inch -> mm
Video Slip
Video Axle Load Distrib.
Video Payload Distrib.
Video Roller Resistance 2

Video Wheel suspension 1
Video Wheel suspension 2
Video Wheels 1
Video Suspension 1
Video Suspension 2
Video Suspension 5
Video Steering 1
Video Steering 2


          A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Leaf Spring







Made from hardened rolled steel ...
... or plastic composites.

The leaf spring allows a relatively simple and reasonable wheel suspension in spite of a large ratio of sprung to non-sprung masses. It is used for truck and occasionally for simpler cross-country vehicles. But this is already often equipped with air suspension. Figure 2 allows an insight into the manufacturing process. After the roller, the spring steel must be hardened before it is assembled and brought in shape. Several layers are connected at their ends with the frame and in the middle with the axis. For safety reasons the second layer is extended towards the mounting points (see figure 1).

A lot of self damping, auxiliary spring suspension possible.

Due to the several layers a desired self damping evolves through friction, which in earlier times made dampers obsolete. Without elastic layers in between, the springs must be lubricated regularly. Because engaging the springs changes the length, it is necessary to have accordingly flexible mounting points. Vehicles with large pay loads (figure 1) in proportion to their tare weight need a relatively soft spring suspension without and a hard spring suspension with load. This is possible with a progressive or bended spring characteristic. For this leaf springs with extra layers are necessary, whose spring tension starts later during the engagement process. In figure 3 the second spring leaf from below is heavier than the rest. If the spring is bent further than the middle, this spring leaf increases the effect. 07/12

Leaf springs with non-constant cross-section ...
Rectangle springs
Triangle springs
Parabolic springs
Trapezoidal springs
Hyperbola springs


cartecc.com               Top of page               Index
2001-2015 Copyright programs, texts, animations, pictures: H. Huppertz - E-Mail
Translator: Don Leslie - Email: lesdon@t-online.de

Our E-Book advertising